
DRAFT

PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010) 39

SpacePy - A Python-based Library of Tools for the
Space Sciences

Steven K. Morley, Daniel T. Welling, Josef Koller, Brian A. Larsen, Michael G. Henderson, Jonathan Niehof

F

Abstract—Space science deals with the bodies within the solar system and
the interplanetary medium; the primary focus is on atmospheres and above—at
Earth the short timescale variation in the the geomagnetic field, the Van Allen
radiation belts and the deposition of energy into the upper atmosphere are key
areas of investigation.

SpacePy is a package for Python, targeted at the space sciences, that aims
to make basic data analysis, modeling and visualization easier. It builds on
the capabilities of the well-known NumPy and matplotlib packages. Publication
quality output direct from analyses is emphasized. The SpacePy project seeks
to promote accurate and open research standards by providing an open envi-
ronment for code development. In the space physics community there has long
been a significant reliance on proprietary languages that restrict free transfer
of data and reproducibility of results. By providing a comprehensive library
of widely-used analysis and visualization tools in a free, modern and intuitive
language, we hope that this reliance will be diminished for non-commercial
users.

SpacePy includes implementations of widely used empirical models, statisti-
cal techniques used frequently in space science (e.g. superposed epoch analy-
sis), and interfaces to advanced tools such as electron drift shell calculations for
radiation belt studies. SpacePy also provides analysis and visualization tools for
components of the Space Weather Modeling Framework including streamline
tracing in vector fields. Further development is currently underway. External
libraries, which include well-known magnetic field models, high-precision time
conversions and coordinate transformations are accessed from Python using
ctypes and f2py. The rest of the tools have been implemented directly in Python.

The provision of open-source tools to perform common tasks will provide
openness in the analysis methods employed in scientific studies and will give
access to advanced tools to all space scientists, currently distribution is limited
to non-commercial use.

Index Terms—astronomy, atmospheric science, space weather, visualization

Introduction

For the purposes of this article we define space science as
the study of the plasma environment of the solar system.
That is, the Earth and other planets are all immersed in the
Sun’s tenuous outer atmosphere (the heliosphere), and all are
affected in some way by natural variations in the Sun. This is
of particular importance at Earth where the magnetized plasma
flowing out from the Sun interacts with Earth’s magnetic field
and can affect technological systems and climate. The primary
focus here is on planetary atmospheres and above - at Earth the

Steven K. Morley, Daniel T. Welling, Josef Koller, Brian A. Larsen, Michael
G. Henderson, and Jonathan Niehof are with the Los Alamos National
Laboratory. E-mail: smorley@lanl.gov.
©2010 Steven K. Morley et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

short timescale variation in the the geomagnetic field, the Van
Allen radiation belts [Mor10] and the deposition of energy into
the upper atmosphere [Mly10] are key areas of investigation.

SpacePy was conceived to provide a convenient library for
common tasks in the space sciences. A number of routine
analyses used in space science are much less common in other
fields (e.g. superposed epoch analysis) and modules to perform
these analyses are provided. This article describes the initial re-
lease of SpacePy (0.1.0), available from Los Alamos National
Laboratory. at http://spacepy.lanl.gov. Currently SpacePy is
available on a non-commercial research license, but open-
sourcing of the software is in process.

SpacePy organization

As packages such as NumPy, SciPy and matplotlib have
become de facto standards in Python, we have adopted these
as the prerequisites for SpacePy.

The SpacePy package provides a number of modules, for a
variety of tasks, which will be briefly described in this article.
HTML help for SpacePy is generated using epydoc and is
bundled with the package. This can be most easily accessed
on import of SpacePy (or any of its modules) by running the
help() function in the appropriate namespace. A schematic of
the organization of SpacePy is shown in figure 1. In this article
we will describe the core modules of SpacePy and provide
some short examples of usage and output.

The most general of the bundled modules is Toolbox. At the
time of writing this contains (among others): a convenience
function for graphically displaying the contents of dictionar-
ies recursively; windowing mean calculations; optimal bin
width estimation for histograms via the Freedman-Diaconis
method; an update function to fetch the latest OMNI (solar
wind/geophysical index) database and leap-second list; com-
parison of two time series for overlap or common elements.

The other modules have more specific aims and are primar-
ily based on new classes. Time provides a container class for
times in a range of time systems, conversion between those
systems and extends the functionality of datetime for space
science use. Coordinates provides a class, and associated func-
tions, for the handling of coordinates and transformations be-
tween common coordinate systems. IrbemPy is a module that
wraps the IRBEM magnetic field library. Radbelt implements
a 1-D radial diffusion code along with diffusion coefficient
calculations and plotting routines. SeaPy provides generic one-

mailto:smorley@lanl.gov
http://spacepy.lanl.gov

DRAFT

40 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 1: A schematic of the organization and contents of the SpacePy
package at the time of writing.

and two-dimensional superposed epoch analysis classes and
some plotting and statistical testing for superposed epoch
analysis. PoPPy is a module for analysis of point processes,
in particular it provides association analysis tools. Empiricals
provides implementations of some common empirical models
such as plasmapause and magnetopause locations. PyBATS is
an extensive sub-package providing tools for the convenient
reading, writing and display of output from the Space Weather
Modeling Framework (a collection of coupled models of the
Sun-Earth system). PyCDF is a fully object-oriented interface
to the NASA Common Data Format library.

Time conversions

SpacePy provides a time module that enables convenient
manipulation of times and conversion between time systems
commonly used in space sciences:

1. NASA Common Data Format (CDF) epoch
2. International Atomic Time (TAI)
3. Coordinated Universal Time (UTC)
4. Gregorian ordinal time (RDT)
5. Global Positioning System (GPS) time
6. Julian day (JD)
7. modified Julian day (MJD)
8. day of year (DOY)
9. elapsed days of year (eDOY)
10. UNIX time (UNX)

This is implemented as a container class built on the
functionality of the core Python datetime module. To illustrate
its use, we present code which instantiates a Ticktock
object, and fetches the time in different systems:
>>> import spacepy.time as spt
SpacePy: Space Science Tools for Python
SpacePy is released under license.
See __licence__ for details,
and help() for HTML help.
>>> ts = spt.Ticktock([‘2009-01-12T14:30:00’,
... ‘2009-01-13T14:30:00’],
... ‘ISO’)
>>> ts
Ticktock([‘2009-01-12T14:30:00’,

‘2009-01-13T14:30:00’]),

dtype=ISO
>>> ts.UTC
[datetime.datetime(2009, 1, 12, 14, 30),
datetime.datetime(2009, 1, 13, 14, 30)]
>>> ts.TAI
array([1.61046183e+09, 1.61054823e+09])
>>> ts.isoformat(‘microseconds’)
>>> ts.ISO
[‘2009-01-12T14:30:00.000000’,
‘2009-01-13T14:30:00.000000’]

Coordinate handling

Coordinate handling and conversion is performed by the
coordinates module. This module provides the Coords class
for coordinate data management. Transformations between
cartesian and spherical coordinates are implemented directly in
Python, but the coordinate conversions are currently handled
as calls to the IRBEM library.

In the following example two locations are specified in
a geographic cartesian coordinate system and converted to
spherical coordinates in the geocentric solar magnetospheric
(GSM) coordinate system. The coordinates are stored as object
attributes. For coordinate conversions times must be supplied
as many of the coordinate systems are defined with respect to,
e.g., the position of the Sun, or the plane of the Earth’s dipole
axis, which are time-dependent.
>>> import spacepy.coordinates as spc
>>> import spacepy.time as spt
>>> cvals = spc.Coords([[1,2,4],[1,2,2]],
... ‘GEO’, ‘car’)
>>> cvals.ticktock = spt.Ticktock(
... [‘2002-02-02T12:00:00’,
... ‘2002-02-02T12:00:00’],
... ‘ISO’)
>>> newcoord = cvals.convert(‘GSM’, ‘sph’)

A new, higher-precision C library to perform time conver-
sions, coordinate conversions, satellite ephemeris calculations,
magnetic field modeling and drift shell calculations—the
LANLGeoMag (LGM) library—is currently being wrapped
for Python and will eventually replace the IRBEM library as
the default in SpacePy.

The IRBEM library

ONERA (Office National d’Etudes et Recherches Aerospa-
tiales) provide a FORTRAN library, the IRBEM library
[Bos07], that provides routines to compute magnetic coordi-
nates for any location in the Earth’s magnetic field, to perform
coordinate conversions, to compute magnetic field vectors
in geospace for a number of external field models, and to
propagate satellite orbits in time.

A number of key routines in the IRBEM library have
been wrapped uing f2py, and a ‘thin layer’ module IrbemPy
has been written for easy access to these routines. Current
functionality includes calls to calculate the local magnetic field
vectors at any point in geospace, calculation of the magnetic
mirror point for a particle of a given pitch angle (the angle
between a particle’s velocity vector and the magnetic field line
that it immediately orbits such that a pitch angle of 90 degrees
signifies gyration perpendicular to the local field) anywhere in
geospace, and calculation of electron drift shells in the inner
magnetosphere.

DRAFT

SPACEPY - A PYTHON-BASED LIBRARY OF TOOLS FOR THE SPACE SCIENCES 41

As mentioned in the description of the Coordinates module,
access is also provided to the coordinate transformation capa-
bilities of the IRBEM library. These can be called directly, but
IrbemPy is easier to work with using Coords objects. This
is by design as we aim to incorporate the LGM library and
replace the calls to IRBEM with calls to LGM without any
change to the Coordinates syntax.

OMNI

The OMNI database [Kin05] is an hourly resolution, multi-
source data set with coverage from November 1963; higher
temporal resolution versions of the OMNI database exist, but
with coverage from 1995. The primary data are near-Earth
solar wind, magnetic field and plasma parameters. However,
a number of modern magnetic field models require derived
input parameters, and [Qin07] have used the publicly-available
OMNI database to provide a modified version of this database
containing all parameters necessary for these magnetic field
models. These data are currently updated and maintained by
Dr. Bob Weigel and are available through ViRBO (Virtual
Radiation Belt Observatory)1.

In SpacePy this data is made available on request on install;
if not downloaded when SpacePy is installed and attempt to
import the omni module will ask the user whether they wish to
download the data. Should the user require the latest data, the
update function within spacepy.toolbox can be used
to fetch the latest files from ViRBO.

As an example, we fetch the OMNI data for the powerful
“Hallowe’en” storms of October and November, 2003. These
geomagnetic storms were driven by two solar coronal mass
ejections that reached the Earth on October 29th and Novem-
ber 20th.

>>> import spacepy.time as spt
>>> import spacepy.omni as om
>>> import datetime as dt
>>> st = dt.datetime(2003,10,20)
>>> en = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(days=1)
>>> ticks = spt.tickrange(st, en, delta, ‘UTC’)
>>> data = om.get_omni(ticks)

data is a dictionary containing all the OMNI data, by variable,
for the timestamps contained within the Ticktock object
ticks

Superposed Epoch Analysis

Superposed epoch analysis is a technique used to reveal
consistent responses, relative to some repeatable phenomenon,
in noisy data [Chr08]. Time series of the variables under
investigation are extracted from a window around the epoch
and all data at a given time relative to epoch forms the sample
of events at that lag. The data at each time lag are then
averaged so that fluctuations not consistent about the epoch
cancel. In many superposed epoch analyses the mean of the
data at each time u relative to epoch, is used to represent
the central tendency. In SeaPy we calculate both the mean
and the median, since the median is a more robust measure

1. http://virbo.org/QinDenton

Fig. 2: A typical output from the SpacePy Sea class using OMNI
solar wind velocity data. The black line marks the superposed epoch
median, the red dashed line marks the superposed epoch mean, and
the blue fill marks the interquartile range. This figure was generated
using the code in the text and a list of 67 events published by [Mor10].

of central tendency and is less affected by departures from
normality. SeaPy also calculates a measure of spread at each
time relative to epoch when performing the superposed epoch
analysis; the interquartile range is the default, but the median
absolute deviation and bootstrapped confidence intervals of the
median (or mean) are also available. The output of the example
below is shown in figure 2.

>>> import spacepy.seapy as se
>>> import spacepy.omni as om
>>> import spacepy.toolbox as tb
>>> epochs = se.readepochs(‘SI_GPS_epochs_OMNI.txt’)
>>> st, en = datetime.datetime(2005,1,1),
... datetime.datetime(2009,1,1)
>>> einds, oinds = tb.tOverlap([st, en],
... om.omnidata[‘UTC’])
>>> omni1hr = array(om.omnidata[‘UTC’])[oinds]
>>> delta = datetime.timedelta(hours=1)
>>> window= datetime.timedelta(days=3)
>>> sevx = se.Sea(om.omnidata[‘velo’][oinds],
... omni1hr, epochs, window, delta)
>>> sevx.sea()
>>> sevx.plot(epochline=True, yquan=‘V$_{sw}$’,

xunits=‘days’, yunits=‘km s$^{-1}$’)

More advanced features of this module have been used in
analyses of the Van Allen radiation belts and can be found in
the peer-reviewed literature [Mor10].

Association analysis

This module provides a point process class PPro and methods
for association analysis (see, e.g., [Mor07]). This module
is intended for application to discrete time series of events
to assess statistical association between the series and to
calculate confidence limits. Since association analysis is rather
computationally expensive, this example shows timing. To
illustrate its use, we here reproduce the analysis of [Wil09]
using SpacePy. After importing the necessary modules, and
assuming the data has already been loaded, PPro objects are
instantiated. The association analysis is performed by calling

http://virbo.org/QinDenton

DRAFT

42 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 3: Reproduction of the association analysis done by [Wil09],
using the PoPPy module of SpacePy. The figure shows a significant
association around zero time lag between the two point processes
under study (northward turnings of the interplanetary magnetic field
and auroral substorm onsets).

the assoc method and bootstrapped confidence intervals are
calculated using the aa_ci method. It should be noted that
this type of analysis is computationally expensive and, though
currently implemented in pure Python may be rewritten using
Cython or C to gain speed.
>>> import datetime as dt
>>> import spacepy.time as spt
>>> onsets = spt.Ticktock(onset_epochs, ‘CDF’)
>>> ticksR1 = spt.Ticktock(tr_list, ‘CDF’)
>>> lags = [dt.timedelta(minutes=n)
... for n in xrange(-400,401,2)]
>>> halfwindow = dt.timedelta(minutes=10)
>>> pp1 = poppy.PPro(onsets.UTC, ticksR1.UTC,
... lags, halfwindow)
>>> pp1.assoc()
>>> pp1.aa_ci(95, n_boots=4000)
>>> pp1.plot()

The output is shown in figure 3 and can be compared to figure
6a of [Wil09].

NASA Common Data Format

At the time of writing, limited support for NASA CDF2 has
been written in to SpacePy. NASA themselves have worked
with the developers of both IDL™ and MatLab™. In addition
to the standard C library for CDF, they provide a FORTRAN
interface and an interface for Perl—the latest addition is
support for C#. As Python is not supported by the NASA team,
but is growing in popularity in the space science community
we have written a module to handle CDF files.

The C library is made available in Python using ctypes and
an object-oriented “thin layer” has been written to provide a
Pythonic interface. For example, to open and query a CDF
file, the following code is used:
>>> import spacepy.pycdf as cdf
>>> myfile = cdf.CDF()
>>> myfile.keys()

2. http://cdf.gsfc.nasa.gov/

The CDF object inherits from the
collections.MutableMapping object and provides
the user a familiar ’dictionary-like’ interface to the file
contents. Write and edit capabilities are also fully supported,
further development is being targeted towards the generation
of ISTP-compliant CDF files3 for the upcoming Radiation
Belt Storm Probes (RBSP) mission.

As an example of this use, creating a new CDF from a
master (skeleton) CDF has similar syntax to opening one:

>>> cdffile = cdf.CDF(’cdf_file.cdf’,
... ’master_cdf_file.cdf’)

This creates and opens cdf_filename.cdf as a copy of
master_cdf_filename.cdf. The variables can then be
populated by direct assignment, as one would populate any
new object. Full documentation can be found both in the
docstrings and on the SpacePy website.

Radiation belt modeling

Geosynchronous communications satellites are especially vul-
nerable to outer radiation belt electrons that can penetrate
deep into the system and cause electrostatic charge buildup
on delicate electronics. The complicated physics combined
with outstanding operational challenges make the radiation
belts an area of intense research. A simple yet powerful
numerical model of the belts is included in SpacePy in the
RadBelt module. This module allows users to easily set up a
scenario to simulate, obtain required input data, perform the
computation, then visualize the results. The interface is simple
enough to allow users to easily include an analysis of radiation
belt conditions in larger magnetospheric studies, but flexible
enough to allow focused, in-depth radiation belt research.

The model is a radial diffusion model of trapped electrons
of a single energy and a single pitch angle. The heart of
the problem of radiation belt modeling through the diffusion
equation is the specification of diffusion coefficients, source
and loss terms. Determining these values is a complicated
problem that is tackled in a variety of different ways, from first
principles approaches to simpler empirical relationships. The
RadBelt module approaches this with a paradigm of flexibility:
while default functions that specify these values are given,
many are available and additional functions are easy to specify.
Often, the formulae require input data, such as the Kp or Dst
indices. This is true for the RadBelt defaults. These data are
obtained automatically from the OMNI database, freeing the
user from the tedious task of fetching data and building input
files. This allows simple comparative studies between many
different combinations of source, loss, and diffusion models.

Use of the RadBelt module begins with instantiation of
an RBmodel object. This object represents a version of the
radial diffusion code whose settings are controlled by its
various object attributes. Once the code has been properly
configured, the time grid is created by specifying a start
and stop date and time along with a step size. This is done
through the setup_ticks instance method that accepts
datetime or Ticktock arguments. Finally, the evolve method

3. http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html

http://cdf.gsfc.nasa.gov/
http://spdf.gsfc.nasa.gov/sp_use_of_cdf.html

DRAFT

SPACEPY - A PYTHON-BASED LIBRARY OF TOOLS FOR THE SPACE SCIENCES 43

Fig. 4: RadBelt simulation results for the 2003 Hallowe’en storms.
The top frame shows phase space density as a function of drift shell
and time. The bottom frame shows the geomagnetic Kp and Dst
indices during the storm.

is called to perform the simulation, filling the PSD attribute
with phase space densities for all L and times specified during
configuration. The instance method plot yields a quick way
to visualize the results using matplotlib functionality. The
example given models the phase space density during the
“Hallowe’en” storms of 2003. The results are displayed in
figure 4. In the top frame, the phase space density is shown.
The white line plotted over the spectrogram is the location of
the last closed drift shell, beyond which the electrons escape
the magnetosphere. Directly below this frame is a plot of the
two geomagnetic indices, Dst and Kp, used to drive the model.
With just a handful of lines of code, the model was setup,
executed, and the results were visualized.
>>> from spacepy import radbelt as rb
>>> import datetime as dt
>>> r = rb.RBmodel()
>>> starttime = dt.datetime(2003,10,20)
>>> endtime = dt.datetime(2003,12,5)
>>> delta = dt.timedelta(minutes=60)
>>> r.setup_ticks(starttime, endtime,
... delta, dtype=‘UTC’)
>>> r.evolve()
>>> r.plot(clims=[4,11])

Visualizing space weather models

The Block Adaptive Tree Solar wind Roe-type Upwind
Scheme code, or BATS-R-US, is a widely used numerical
model in the space science community. It is a magnetohy-
drodynamic (MHD) code [Pow99], which means it combines
Maxwell’s equations for electromagnetism with standard fluid
dynamics to produce a set of equations suited to solving
spatially large systems while using only modest computational
resources. It is unique among other MHD codes in the space
physics community because of its automatic grid refinement,
compile-time selection of many different implementations
(including multi fluid, Hall resistive, and non-isotropic MHD),
and its library of run-time options (such as solver and scheme
configuration, output specification, and much more). It has

been used in a plethora of space applications, from planetary
simulations (including Earth [Wel10b] and Mars [Ma07]) to
solar and interplanetary investigations [Coh09]. As a key com-
ponent of the Space Weather Modeling Framework (SWMF)
[Tot07], it has been coupled to many other space science
numerical models in order to yield a true ‘sun to mud’
simulation suite that handles each region with the appropriate
set of governing equations.

Visualizing output from the BATS-R-US code comes with
its own challenges. Good analysis requires a combination of
two and three dimensional plots, the ability to trace field
lines and stream lines through the domain, and the slicing
of larger datasets in order to focus on regions of interest.
Given that BATS-R-US is rarely used by itself, it is also
important to be able to visualize output from the coupled codes
used in conjunction. Professional computational fluid dynamic
visualization software solutions excel at the first points, but
are prohibitively expensive and often leave the user searching
for other solutions when trying to combine the output from
all SWMF modules into a single plot. Scientific computer
languages, such as IDL™ and MatLab™, are flexible enough
to tackle the latter issue, but do not contain the proper tools
required by fluid dynamic applications. Because all of these
solutions rely on proprietary software, there are always license
fees involved before plots can be made.

The PyBats package of SpacePy attempts to overcome these
difficulties by providing a free, platform independent way to
read and visualize BATS-R-US output as well as output from
models that are coupled to it. It builds on the functionality
of NumPy and matplotlib to provide specialized visualization
tools that allow the user to begin evaluating and exploring
output as quickly as possible.

The core functionality of PyBats is a set of classes that read
and write SWMF file formats. This includes simple ASCII
log files, ASCII input files, and a complex but versatile self-
descriptive binary format. Because many of the codes that
are integrated into the SWMF use these formats, including
BATS-R-US, it is possible to begin work right away with
these classes. Expanded functionality is found in code-specific
modules. These contain classes to read and write output
files, inheriting from the PyBats base classes when possible.
Read/write functionality is expanded in these classes through
object methods for plotting, data manipulation, and common
calculations.

Figure 5 explores the capabilities of PyBats. The figure is a
typical medley of desired output from a basic simulation that
used only two models: BATS-R-US and the Ridley Ionosphere
Model. Key input data that drove the simulation is shown
as well. Creating the upper left frame of figure 5, a two
dimensional slice of the simulated magnetosphere saved in
the SWMF binary format, would require far more work if the
base classes were chosen. The bats submodule expands the
base capability and makes short work of it. Relevant syntax is
shown below. The file is read by instantiating a Bats2d object.
Inherited from the base class is the ability to automatically
detect bit ordering and the ability to carefully walk through
the variable-sized records stored in the file. The data is again
stored in a dictionary as is grid information; there is no time

DRAFT

44 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Fig. 5: Typical output desired by users of BATS-R-US and the SWMF.
The upper left frame is a cut through the noon-midnight meridian
of the magnetosphere as simulated by BATS-R-US at 7:15 UT on
September 1, 2005. The dial plots to the left are the ionospheric
electric potential and Hall conductivity at the same time as calculated
by RIM. Below are the solar wind conditions driving both models.

information for the static output file. Extra information, such
as simulation parameters and units, are also placed into object
attributes. The unstructured grid is not suited for matplotlib,
so the object method regrid is called. The object remembers
that it now has a regular grid; all data and grid vectors are
now two dimensional arrays. Because this is a computationally
expensive step, the regridding is performed to a resolution of
0.25 Earth radii and only for a subset of the total domain.
The object method contourf, a wrapper to the matplotlib
method of the same name, is used to add the pressure contour
to an existing axis, ax. The wrapped function accepts keys to
the grid and data dictionaries of the Bats2d object to prevent
the command from becoming overly verbose. Extra keyword
arguments are passed to matplotlib’s contourf method. If
the original file contains the size of the inner boundary of the
code, this is reflected in the object and the method add_body
is used to place it in the plot.

>>> import pybats.bats as bats
>>> obj = bats.Bats2d(‘filename’)
>>> obj.regrid(0.25, [-40, 15], [-30,30])
>>> obj.contourf(ax, ‘x’, ‘y’, ‘p’)
>>> obj.add_body(ax)
>>> obj.add_planet_field(ax)

The placement of the magnetic field lines is a strength of the
bats module. Magnetic field lines are simply streamlines of
the magnetic field vectors and are traced through the domain
numerically using the Runge-Kutta 4 method. This step is
implemented in C to expedite the calculation and wrapped
using f2py. The Bats2d method add_planet_field is
used to add multiple field lines; this method finds closed
(beginning and ending at the inner boundary), open (beginning
or ending at the inner boundary, but not both), or pure solar
wind field lines (neither beginning or ending at the inner
boundary) and attempts to plot them evenly throughout the
domain. Closed field lines are colored white to emphasize the

open-closed boundary. The user is naive to all of this, however,
as one call to the method works through all of the steps.

The last two plots, in the upper right hand corner of figure
5, are created through the code-specific rim module, designed
to handle output from the Ridley Ionosphere Model (RIM)
[Rid02].

PyBats capabilities are not limited to what is shown here.
The Stream class can extract values along the streamline as it
integrates, enabling powerful flow-aligned analysis. Modules
for other codes coupled to BATS-R-US, including the Ring
current Atmosphere interactions Model with Self-Consistent
Magnetic field (RAM-SCB, ram module) and the Polar Wind
Outflow Model (PWOM, pwom module) are already in place.
Tools for handling virtual satellites (output types that simulate
measurements that would be made if a suite of instruments
could be flown through the model domain) have already been
used in several studies. Combining the various modules yields
a way to richly visualize the output from all of the coupled
models in a single language. PyBats is also in the early
stages of development, meaning that most of the capabilities
are yet to be developed. Streamline capabilities are currently
being upgraded by adding adaptive step integration methods
and advanced placement algorithms. Bats3d objects are
being developed to complement the more frequently used
two dimensional counterpart. A GUI interface is also under
development to provide users with a point-and-click way to
add field lines, browse a time series of data, and quickly
customize plots. Though these future features are important,
PyBats has already become a viable free alternative to current,
proprietary solutions.

SpacePy in action

A number of key science tasks undertaken by the SpacePy
team already heavily use SpacePy. Some articles in peer-
reviewed literature have been primarily produced using the
package (e.g. [Mor10], [Wel10a]). The Science Operations
Center for the RBSP mission is also incorporating SpacePy
into its processing stream.

The tools described here cover a wide range of routine
analysis and visualization tasks utilized in space science. This
software is currently available on a non-commercial research
license, but the process to release it as free and open-source
software is underway. Providing this package in Python makes
these tools accessible to all, provides openness in the analysis
methods employed in scientific studies and will give access to
advanced tools to all space scientists regardless of affiliation or
circumstance. The SpacePy team can be contacted at spacepy-
info@lanl.gov.

REFERENCES

[Bos07] D. Boscher, S. Bourdarie, P. O’Brien and T. Guild ONERA-DESP
library v4.1, http://irbem.sourceforge.net/, 2007.

[Chr08] C. Chree Magnetic declination at Kew Observatory, 1890 to 1900,
Phil. Trans. Roy. Soc. A, 208, 205–246, 1908.

[Coh09] O. Cohen, I.V. Sokolov, I.I. Roussev, and T.I. Gombosi Validation
of a synoptic solar wind model, J. Geophys. Res., 113, 3104,
doi:10.1029/2007JA012797, 2009.

mailto:spacepy-info@lanl.gov
mailto:spacepy-info@lanl.gov
http://irbem.sourceforge.net/

DRAFT

SPACEPY - A PYTHON-BASED LIBRARY OF TOOLS FOR THE SPACE SCIENCES 45

[Kin05] J.H. King and N.E. Papitashvili Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field
data, J. Geophys. Res., 110, A02209, 2005.

[Ma07] Y.J. Ma, A.F. Nagy, G. Toth, T.E. Cravens, C.T. Russell, T.I.
Gombosi, J.-E. Wahlund, F.J. Crary, A.J. Coates, C.L. Bertucci,
F.M. Neubauer 3D global multi-species Hall-MHD simulation of
the Cassini T9 flyby, Geophys. Res. Lett., 34, 2007.

[Mly10] M.G. Mlynczak, L.A. Hunt, J.U. Kozyra, and J.M. Russell III
Short-term periodic features observed in the infrared cooling of
the thermosphere and in solar and geomagnetic indexes from 2002
to 2009 Proc. Roy. Soc. A, doi:10.1098/rspa.2010.0077, 2010.

[Mor07] S.K. Morley and M.P. Freeman On the association between north-
ward turnings of the interplanetary magnetic field and substorm
onset, Geophys. Res. Lett., 34, L08104, 2007.

[Mor10] S.K. Morley, R.H.W. Friedel, E.L. Spanswick, G.D. Reeves, J.T.
Steinberg, J. Koller, T. Cayton, and E. Noveroske Dropouts of
the outer electron radiation belt in response to solar wind stream
interfaces: Global Positioning System observations, Proc. Roy. Soc.
A, doi:10.1098/rspa.2010.0078, 2010.

[Pow99] K. Powell, P. Roe, T. Linde, T. Gombosi, and D.L. De Zeeuw A
solution-adaptive upwind scheme for ideal magnetohydrodynamics,
J. Comp. Phys., 154, 284-309, 1999.

[Qin07] Z. Qin, R.E. Denton, N. A. Tsyganenko, and S. Wolf Solar wind
parameters for magnetospheric magnetic field modeling, Space
Weather, 5, S11003, 2007.

[Rid02] A.J. Ridley and M.W. Liemohn A model-derived storm time asym-
metric ring current driven electric field description J. Geophys.
Res., 107, 2002.

[Tot07] Toth, G., D.L.D. Zeeuw, T.I. Gombosi, W.B. Manchester, A.J. Rid-
ley, I.V. Sokolov, and I.I. Roussev Sun to thermosphere simulation
of the October 28-30, 2003 storm with the Space Weather Modeling
Framework, Space Weather, 5, S06003, 2007.

[Vai09] R. Vainio, L. Desorgher, D. Heynderickx, M. Storini, E. Fluckiger,
R.B. Horne, G.A. Kovaltsov, K. Kudela, M. Laurenza, S. McKenna-
Lawlor, H. Rothkaehl, and I.G. Usoskin Dynamics of the Earth’s
Particle Radiation Environment, Space Sci. Rev., 147, 187--231,
2007.

[Wel10a] D.T. Welling, and A.J. Ridley Exploring sources of magnetospheric
plasma using multispecies MHD, J. Geophys. Res., 115, 4201,
2010.

[Wel10b] D.T. Welling, V. Jordanova, S. Zaharia, A. Glocer, and G. Toth
The effects of dynamic ionospheric outflow on the ring current, Los
Alamos National Laboratory Technical Report, LA-UR 10-03065,
2010.

[Wil09] J.A. Wild, E.E. Woodfield, and S.K. Morley, On the triggering
of auroral substorms by northward turnings in the interplanetary
magnetic field, Ann. Geophys., 27, 3559-3570, 2009.

	Introduction
	SpacePy organization
	Time conversions
	Coordinate handling
	The IRBEM library
	OMNI
	Superposed Epoch Analysis
	Association analysis
	NASA Common Data Format
	Radiation belt modeling
	Visualizing space weather models
	SpacePy in action
	References

